Astronomers are getting their hands on JWST data. Here’s what you can expect to see in the near future.

With the release of the James Webb Space Telescope’s first images on July 12 (and a sneaky reveal by US President Joe Biden on July 11), NASA, ESA and the Canadian Space Agency proved that the $10 billion, 1-million-miles-from-Earth, two-decades-in-the-making dream ‘scope actually works. And it works flawlessly. Just take a look at the upgraded visuals Webb delivered over its predecessor, Hubble. They’re visceral masterpieces that force us to think of the universe’s magnificence and reflect on our solar system’s negligible corner within. 

But what we saw in early July was only the preface of JWST’s book. It’ll be the chapters that follow which will write out its legacy. 

Even though the telescope’s first full-color results were excellent, they’re merely a taste of the instrument’s capabilities. In truth, we may not even have words to describe what’s to come, in the way the Hubble Space Telescope’s first light image couldn’t foreshadow the astounding deep fields that would one day plaster astronomy department walls or the nebulas that would inspire poetry.

Five galaxies locked in a dance make up Stephan’s Quintet. Images by the JWST released on July 12, 2022.NASA

But we might be able to infer some scenes of JWST’s future because, despite this telescope’s public recency, scientists have been lining up for years to use it. 

Already, researchers are set to point it at phenomena that’ll blow your mind: massive black holes, shattering galaxy mergers, luminescent binary stars emanating smoke signals, and even marvels closer to home like Ganymede, an icy moon of Jupiter.

More specifically, a lucky first few scientists hold proposals divided into six categories, each meticulously selected by the James Webb Space Telescope Advisory Committee and the Space Telescope Science Institute in November 2017 — not to mention the more than 200 international projects separately awarded time on the telescope and those ready to join the waitlist.

But the initial cadre of JWST space explorers is meant to be a win-win for both scientist and ‘scope. These studies will create datasets, baselines, handy life hacks and just generally prime the powerful machine’s instruments for everything that comes next. For the big moments that’ll go down in history.

An artist’s conception of the James Webb Space Telescope.NASA GSFC/CIL/Adriana Manrique Gutierrez

«To realize the James Webb Space Telescope’s full science potential, it is imperative that the science community quickly learns to use its instruments and capabilities,» says a page about the Director’s Discretionary-Early Release Science Programs, which was put together to pick out which investigators will test out JWST for its first 5 months of science operations (following the 6-month telescope commissioning period).

Perusing the list has heightened my anticipation — and I bet it’ll elevate yours, too. 

Here’s a snippet.

Turning the page for JWST

Some 3.5 billion light-years from Earth lies an enormous cluster of galaxies called Abell 2744, also known as Pandora’s Cluster. 

One might say this is the perfect starting candidate for JWST, as it’s part of the ancient, faraway universe. NASA’s next-gen telescope contains a wealth of infrared imaging equipment that can access light emanating from the distant cosmos — light neither human eyes nor standard optical telescopes can see. It’s a science exploration match made in heaven. 

Thus, a crew of investigators plans to observe what’s going on in this brilliant galaxy cluster, hidden to human vision but vital to astrophysical advancement. 

Abell 2744, imaged by combining X-rays from Chandra (diffuse blue emission) with optical light data from Hubble (red, green and blue).NASA/CXC; Optical: NASA/STScI

They plan on using two of JWST’s instruments, called the Near-Infrared Spectrograph and the Near Infrared Imager and Slitless Spectrograph, both of which can simply decode chemical composition of faraway worlds stuck in the infrared zone we can’t trespass. 

But JWST isn’t merely farsighted. It can turn on its reading glasses to scan nearby things, too. 

That’s why another team is more interested in figuring out how to navigate phenomena in our very own cosmic neighborhood. Their blueprints say they’ll characterize Jupiter’s cloud layers, winds, composition, temperature structure and even auroral activity — aka, the Jovian version of our northern lights. 

This research bit is poised to use nearly all of JWST’s groundbreaking infrared equipment: Nirspec, Niriss, as well as the Near-Infrared Camera — JWST’s alpha imager — and the Mid-Infrared Camera (MIRI), which, as you might guess, specializes in mid-infrared light detection. «Our program will thus demonstrate the capabilities of JWST’s instruments on one of the largest and brightest sources in the solar system and on very faint targets next to it,» they write in their abstract.

Some of the work on Jupiter has already been performed according to the status report for the project and observation windows continue into August. In addition, Jupiter’s moon Ganymede, which is the largest in the solar system, and the extremely active Io, are also set to be examined with MIRI. The latter is particularly interesting, as the researchers hope to resolve Io’s volcanoes and compare Webb’s views to classical views

Jupiter, center, and its moon Europa, left, are seen through the James Webb Space Telescope’s NIRCam instrument 2.12 micron filter. NASA, ESA, CSA and B. Holler and J. Stansberry (STScI)

Next up are the scientists focused on dust. But not just any dust. Stardust. 

We know dust is the main ingredient in the formation of stars and planets that decorate our universe, but we’re still foggy on the timeline they followed to bring us where we are today — especially because a lot of that crucial-to-our-existence dust is scattered in the early universe. And the early universe is illuminated purely by infrared light. 

Aha. Precisely what JWST can — and will — delve into. 

Breaking down the story of stardust means constructing an understanding of the building blocks of our cosmic universe — similar to how studying atoms opens up knowledge about chunks of matter. And as Carl Sagan once said, «The cosmos is within us. We are made of star-stuff. We are a way for the universe to know itself.» 

Read more at:


Comments are closed

Acerca de este sitio

La ACIEAU es una plataforma de networking profesional de científicos e investigadores españoles que trabajan en los Emiratos Árabes Unidos. Cuenta con más de 60 miembros, incluidos destacados científicos, investigadores y expertos en una amplia gama de áreas de conocimiento: desde Ingeniería, Medio Ambiente, Salud, Veterinaria y Biología, hasta Ciencias Sociales e Inteligencia Artificial. Su propósito es difundir los logros científicos y tecnológicos de los investigadores españoles en los Emiratos Árabes Unidos.