Una estampa que parecía que nunca iba a llegar: el James Webb en la Guayana Francesa (ESA).

Pocos objetos hay en el mundo que cuesten diez mil millones de dólares. Y uno de ellos es el Telescopio Espacial James Webb (JWST), la joya de la corona de la división de astronomía de la NASA. El James Webb es el instrumento astronómico más caro y complejo jamás diseñado por el ser humano. Después de quince años e innumerables retrasos y sobrecostes, el James Webb afronta su recta final antes de despegar el próximo 18 de diciembre desde la Guayana Francesa en un cohete Ariane 5 ECA+. El observatorio espacial llegó al puerto de Pariacabo de la Guayana a bordo del buque MN Colibrí, que transportó el preciado objeto desde las instalaciones de Northrop-Grumman en California a través del Canal de Panamá. Normalmente, los satélites se transportan en aviones de carga como el An-124 o el C-17, pero el Webb es tan grande que se tuvo que llevar en barco. El traslado no ha estado exento de polémica después de que se decidiese ocultar la fecha del viaje para evitar un posible secuestro por parte de… piratas. Sí, piratas, como lo oyes. Supongo que cuando llevas algo cuyo valor es de diez mil millones de dólares cualquier exceso de paranoia es comprensible.

Pero lo importante es que el JWST ya está en la sala de espera listo para embarcar en su vuelo. Solo queda superar las pruebas finales y esperar que no existan más contratiempos. Precisamente, antes de que el JWST surque los cielos a bordo de su cohete en diciembre, el Ariane 5 debe despegar el 22 de octubre en la misión comercial VA255. Si todo sale bien en esta misión, como sería de esperar, el lanzamiento del JWST solo dependerá de sí mismo. En caso contrario… bueno, mejor no imaginar qué podría pasar en caso contrario. El Ariane 5 se eligió en su momento por ser un lanzador muy fiable y porque es parte de la contribución de la Agencia Espacial Europea (ESA) al proyecto. No olvidemos que en el JWST colaboran NASA, ESA y CSA (la Agencia Espacial Canadiense). Sin embargo, el «susto» que dio el Ariane 5 en la misión VA241 de 2018 y, más recientemente, ciertos problemas con la cofia, han creado algo de inquietud. En el caso de la cofia, el problema es un tanto sutil.

Ahí va un telescopio de diez mil millones de dólares. Llegada del JWST a Kourou (ESA).
Sacando al JWST de su contenedor en la Guayana (ESA).
Partes del James Webb (NASA).
Partes del James Webb (GAO).

Como en todos los lanzamientos, la cofia del Ariane 5 se expulsa cuando prácticamente se ha alcanzado el vacío y ya no tiene sentido seguir protegiendo la carga útil. Sin embargo, no se separa en un vacío perfecto, ya que se intenta conseguir un equilibrio entre las prestaciones del lanzador y la protección de la carga. Cuanto más tarde se separe, más protegida estará la carga útil, pero mayor impacto tendrá la masa de la cofia en la capacidad de lanzamiento del vector. Como resultado, se elige un punto óptimo en el que la carga esté protegida y no se penalice demasiado las prestaciones del cohete. Por tanto, la cofia se separa cuando todavía queda cierta cantidad de aire en el interior de la cofia, pero se considera despreciable.

El JWST y el Ariane 5 (ESA).
El James Webb plegado en la cofia (ESA).

El problema surgió en marzo de 2019, cuando los técnicos se dieron cuenta que esta cantidad de aire residual podía dañar las delicadas membranas del escudo solar (o térmico) del James Webb durante la despresurización generada por la separación de la cofia (sí, curiosamente a nadie se le ocurrió que esto fuese un problema grave hasta hace un par de años). Finalmente, se tomó la decisión de introducir un nuevo tipo de cofia que cuenta con unos orificios de mayor tamaño en la base para igualar la presión entre el interior y el exterior. Eso sí, las dimensiones de la cofia son similares a las de antes, 17 metros de longitud y 5,4 metros de diámetro. A principios de 2020 Arianespace probó primero esta nueva versión en un vuelo comercial del Ariane 5, pero, a raíz de la misma, se decidió aumentar todavía más el tamaño de los orificios porque los resultados no fueron totalmente satisfactorios. La nueva configuración también se puso a prueba en agosto de 2020.

Concepto de telescopio infrarrojo de 6 metros de 1990  (NRC, 1990 Decadal Survey, Garth Illingworth/NASA/ESA).
Longitudes de onda que serán observadas por el JWST y el área de los telescopios espaciales (NASA).
Uno de los conceptos iniciales del NGST con espejo desplegable de alrededor de finales de los 90 (NASA/ESA).

El James Webb nació a finales de los años 80 como una propuesta de observatorio espacial para estudiar el infrarrojo medio que complementase la labor del telescopio espacial Hubble, un telescopio espacial muy diferente que observa el ultravioleta, el visible y el infrarrojo cercano. El infrarrojo medio es una región del espectro que nos permite ver a través de las nubes de polvo y gas interestelares y, por tanto, comprender mejor los procesos de formación estelar y de planetas. Además, permite estudiar los objetos muy lejanos con un alto corrimiento al rojo que existían al comienzo del Universo, como las primeras estrellas y galaxias. La nueva generación de telescopios terrestres de gran tamaño hacían difícil justificar el enorme coste de un telescopio espacial que operase en el visible, como el Hubble, pero el ultravioleta y el infrarrojo medio son, y serán, regiones del espectro electromagnético vetadas a estos observatorios por culpa de nuestra atmósfera. En 1990 el informe Decadal Survey recomendó que el próximo gran telescopio espacial de la NASA fuese un observatorio infrarrojo refrigerado con un espejo primario de 6 a 10 metros de diámetros, siendo 8 metros la cifra favorita de compromiso (el espejo primario del Hubble tiene 2,4 metros). En 1995 las restricciones presupuestarias obligaron a reducir el tamaño del espejo primario a 4 metros de diámetro. Por otro lado, el telescopio contaría con un avanzado sistema de refrigeración pasiva que permitiría observar en el infrarrojo sin enfriar los instrumentos con helio o hidrógeno, prolongando su vida útil de forma considerable. A diferencia del Hubble, situado en órbita baja, el nuevo telescopio estaría situado en el punto de Lagrange L2 del sistema Tierra-Sol. De este modo se podrían controlar mejor las temperaturas del telescopio, aunque, a cambio, las posibles misiones de reparación como las que se lanzaron al Hubble serían casi imposibles.

Diseño del NGST de 200 (NASA).
El James Webb de principios de siglo, cuando se denominaba NGST y tenía un espejo de 8 metros de diámetro (ESA).
Región del espectro que estudiará el JWST (NASA).

En 1996 el proyecto, por entonces conocido como NGST (Next Generation Space Telescope), volvió a sufrir un cambio de diseño. El administrador de la NASA Dan Goldin consideró que un espejo de 4 metros era demasiado pequeño y presionó para volver a aumentar el tamaño hasta los 8 metros. Como el espejo no podía caber en la cofia de ningún lanzador, se optó por construir un espejo segmentado y plegable.

Seguir leyendo en: https://danielmarin.naukas.com/2021/10/21/la-recta-final-del-james-webb-la-historia-del-telescopio-espacial-mas-complejo-concebido-por-el-ser-humano/

Tags:

Comments are closed

Acerca de este sitio

La ACIEAU es una plataforma de networking profesional de científicos e investigadores españoles que trabajan en los Emiratos Árabes Unidos. Cuenta con más de 60 miembros, incluidos destacados científicos, investigadores y expertos en una amplia gama de áreas de conocimiento: desde Ingeniería, Medio Ambiente, Salud, Veterinaria y Biología, hasta Ciencias Sociales e Inteligencia Artificial. Su propósito es difundir los logros científicos y tecnológicos de los investigadores españoles en los Emiratos Árabes Unidos.